资源类型

期刊论文 1075

会议视频 71

会议信息 3

会议专题 1

年份

2024 1

2023 111

2022 146

2021 118

2020 91

2019 72

2018 84

2017 50

2016 48

2015 64

2014 41

2013 40

2012 34

2011 45

2010 41

2009 34

2008 23

2007 16

2006 10

2005 9

展开 ︾

关键词

能源 53

可持续发展 14

核能 11

可再生能源 10

碳中和 10

节能 10

能源安全 6

2035 4

新能源 4

氢能 4

燃料电池 4

能源战略 4

能源结构 4

能源转型 4

能源革命 4

节能减排 4

节能环保 4

中长期 3

低碳经济 3

展开 ︾

检索范围:

排序: 展示方式:

Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity

Evelyn Chalmers, Yi Li, Xuqing Liu

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 684-694 doi: 10.1007/s11705-019-1817-0

摘要: This research looks at ways of tailoring and improving the stiffness of polypyrrole hydrogels for use as flexible supercapacitor electrodes. Molecules providing additional cross-linking between polypyrrole chains are added post-polymerisation but before gelation, and are found to increase gel stiffness by up to 600%, with the degree of change dependent on reactant type and proportion. It was also found that addition of phytic acid led to an increase in pseudocapacitive behaviour of the hydrogel, and thus a maximum specific capacitance of 217.07 F·g could be achieved. This is an increase of 140% compared to pristine polypyrrole hydrogels produced by this method.

关键词: supercapacitor     polypyrrole     hydrogel     strengthening     electrochemical    

电化学储能技术发展研究

潘新慧,陈人杰,吴锋

《中国工程科学》 2023年 第25卷 第6期   页码 225-236 doi: 10.15302/J-SSCAE-2023.06.019

摘要:

作为新型电力系统重要组成部分的电化学储能,是解决可再生能源高比例消纳的重要手段、促成“源网荷储”协调运 行的关键装置;电化学储能技术作为新型储能的主流技术、未来能源绿色低碳转型的核心技术,在诸多方面仍待深入发展才 能适应储能规模快速增长、储能系统更为复杂带来的挑战。本文从电源侧、电网侧、用户储能侧出发,分析了电化学储能发 展的需求背景,系统梳理了电化学储能技术在战略布局、关键材料、结构设计等方面的研究进展;在阐明电化学储能技术发 展趋势的基础上,辨识了产品规格不统一、检测平台不完善、理论与实践不贯通、应用成本不理想等制约发展的关键问题。 研究认为,高性能、高安全性、低成本的关键材料,储能器件结构优化及评价,储能系统多能互补及智能化设计,电化学储 能商业化应用模式是后续重点发展方向,需要强化试点示范应用、制定行业标准体系、完善基础设施建设、培育储能人才团 队,以保障电化学储能技术及产业高质量发展。

关键词: 电化学储能;关键材料;结构设计;标准体系;新型电力系统    

Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated

Wenjin Ding, Alexander Bonk, Thomas Bauer

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 564-576 doi: 10.1007/s11705-018-1720-0

摘要:

Recently, more and more attention is paid on applications of molten chlorides in concentrated solar power (CSP) plants as high-temperature thermal energy storage (TES) and heat transfer fluid (HTF) materials due to their high thermal stability limits and low prices, compared to the commercial TES/HTF materials in CSP-nitrate salt mixtures. A higher TES/HTF operating temperature leads to higher efficiency of thermal to electrical energy conversion of the power block in CSP, however causes additional challenges, particularly increased corrosiveness of metallic alloys used as containers and structural materials. Thus, it is essential to study corrosion behaviors and mechanisms of metallic alloys in molten chlorides at operating temperatures (500–800 °C) for realizing the commercial application of molten chlorides in CSP. The results of studies on hot corrosion of metallic alloys in molten chlorides are reviewed to understand their corrosion behaviors and mechanisms under various conditions (e.g., temperature, atmosphere). Emphasis has also been given on salt purification to reduce corrosive impurities in molten chlorides and development of electrochemical techniques to in-situ monitor corrosive impurities in molten chlorides, in order to efficiently control corrosion rates of metallic alloys in molten chlorides to meet the requirements of industrial applications.

关键词: corrosion mechanisms     impurities     metallic corrosion     salt purification     electrochemical techniques    

S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion

Chao Zhang, Chenbao Lu, Shuai Bi, Yang Hou, Fan Zhang, Ming Cai, Yafei He, Silvia Paasch, Xinliang Feng, Eike Brunner, Xiaodong Zhuang

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 346-357 doi: 10.1007/s11705-018-1727-6

摘要:

Porous polymers have been recently recognized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom-containing monomers and versatile polymerization methods. However, the heteroatom elements in as-produced porous carbons are quite relied on monomers. So far, the manipulating of heteroatom in porous polymer derived porous carbons are still very rare and challenge. In this work, a sulfur-enriched porous polymer, which was prepared from a diacetylene-linked porous polymer, was used as precursor to prepare S-doped and/or N-doped porous carbons under nitrogen and/or ammonia atmospheres. Remarkably, S content can sharply decrease from 36.3% to 0.05% after ammonia treatment. The N content and specific surface area of as-fabricated porous carbons can reach up to 1.32% and 1508 m2·g−1, respectively. As the electrode materials for electrical double-layer capacitors, as-fabricated porous carbons exhibit high specific capacitance of up to 431.6 F·g−1 at 5 mV·s−1 and excellent cycling stability of 99.74% capacitance retention after 3000 cycles at 100 mV·s−1. Furthermore, as the electrochemical catalysts for oxygen reduction reaction, as-fabricated porous carbons presented ultralow half-wave-potential of 0.78 V versus RHE. This work not only offers a new strategy for manipulating S and N doping features for the porous carbons derived from S-containing porous polymers, but also paves the way for the structure-performance interrelationship study of heteroatoms co-doped porous carbon for energy applications.

关键词: porous polymers     porous carbons     sulfur and nitrogen doping     supercapacitor    

Redox flow batteries—Concepts and chemistries for cost-effective energy storage

Matthäa Verena HOLLAND-CUNZ, Faye CORDING, Jochen FRIEDL, Ulrich STIMMING

《能源前沿(英文)》 2018年 第12卷 第2期   页码 198-224 doi: 10.1007/s11708-018-0552-4

摘要: Electrochemical energy storage is one of the few options to store the energy from intermittent renewable energy sources like wind and solar. Redox flow batteries (RFBs) are such an energy storage system, which has favorable features over other battery technologies, e.g. solid state batteries, due to their inherent safety and the independent scaling of energy and power content. However, because of their low energy-density, low power-density, and the cost of components such as redox species and membranes, commercialised RFB systems like the all-vanadium chemistry cannot make full use of the inherent advantages over other systems. In principle, there are three pathways to improve RFBs and to make them viable for large scale application: First, to employ electrolytes with higher energy density. This goal can be achieved by increasing the concentration of redox species, employing redox species that store more than one electron or by increasing the cell voltage. Second, to enhance the power output of the battery cells by using high kinetic redox species, increasing the cell voltage, implementing novel cell designs or membranes with lower resistance. The first two means reduce the electrode surface area needed to supply a certain power output, thereby bringing down costs for expensive components such as membranes. Third, to reduce the costs of single or multiple components such as redox species or membranes. To achieve these objectives it is necessary to develop new battery chemistries and cell configurations. In this review, a comparison of promising cell chemistries is focused on, be they all-liquid, slurries or hybrids combining liquid, gas and solid phases. The aim is to elucidate which redox-system is most favorable in terms of energy-density, power-density and capital cost. Besides, the choice of solvent and the selection of an inorganic or organic redox couples with the entailing consequences are discussed.

关键词: electrochemical energy storage     redox flow battery     vanadium    

Energy storage resources management: Planning, operation, and business model

《工程管理前沿(英文)》   页码 373-391 doi: 10.1007/s42524-022-0194-4

摘要: With the acceleration of supply-side renewable energy penetration rate and the increasingly diversified and complex demand-side loads, how to maintain the stable, reliable, and efficient operation of the power system has become a challenging issue requiring investigation. One of the feasible solutions is deploying the energy storage system (ESS) to integrate with the energy system to stabilize it. However, considering the costs and the input/output characteristics of ESS, both the initial configuration process and the actual operation process require efficient management. This study presents a comprehensive review of managing ESS from the perspectives of planning, operation, and business model. First of all, in terms of planning and configuration, it is investigated from capacity planning, location planning, as well as capacity and location combined planning. This process is generally the first step in deploying ESS. Then, it explores operation management of ESS from the perspectives of state assessment and operation optimization. The so-called state assessment refers to the assessment of three aspects: The state of charge (SOC), the state of health (SOH), and the remaining useful life (RUL). The operation optimization includes ESS operation strategy optimization and joint operation optimization. Finally, it discusses the business models of ESS. Traditional business models involve ancillary services and load transfer, while emerging business models include electric vehicle (EV) as energy storage and shared energy storage.

关键词: energy storage system     energy storage resources management     planning configuration     operational management     business model    

Clean energy technology: materials, processes and devices for electrochemical energy conversion and storage

Hong YANG, Junliang ZHANG, Baolian YI

《能源前沿(英文)》 2017年 第11卷 第3期   页码 233-235 doi: 10.1007/s11708-017-0501-7

储能钠电池技术发展的挑战与思考

胡英瑛,吴相伟,温兆银,侯明,衣宝廉

《中国工程科学》 2021年 第23卷 第5期   页码 94-102 doi: 10.15302/J-SSCAE-2021.05.013

摘要:

储能安全是国家能源安全的重要方面,是国民经济发展的重要支撑,对国家安全、可持续发展以及社会稳定具有重要的影响。钠电池技术兼具高功率密度、高能量密度、低成本以及高安全性等优势,成为一类重要的大规模储能技术。本文重点介绍了包括钠硫电池和钠– 金属氯化物电池等在内的典型钠电池体系的技术优势和应用场景,并通过分析钠电池技术在国内外的发展与应用现状提出了我国钠电池技术可能的发展方向并给出了相应的建议,包括支持储能钠电池相关材料科学的研究和工程化技术攻关、推动储能钠电池相关上下游产业的聚集发展、建立健全储能钠电池的相关标准和性能评价平台等措施,以提升我国储能钠电池技术的研发水平和技术成熟度,为我国的能源安全建设带来新的可靠选择。

关键词: 电化学储能     钠电池     钠硫电池     钠– 金属氯化物电池     ZEBRA 电池    

Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-021-1486-3

摘要:

• Energy is needed to accelerate the biological wastewater treatment.

关键词: Biological wastewater treatment     Integrated energy view     Electroactive bacteria     Extracellular electron transfer    

Can energy storage make off-grid photovoltaic hydrogen production system more economical?

《工程管理前沿(英文)》   页码 672-694 doi: 10.1007/s42524-022-0245-x

摘要: Under the ambitious goal of carbon neutralization, photovoltaic (PV)-driven electrolytic hydrogen (PVEH) production is emerging as a promising approach to reduce carbon emission. Considering the intermittence and variability of PV power generation, the deployment of battery energy storage can smoothen the power output. However, the investment cost of battery energy storage is pertinent to non-negligible expenses. Thus, the installation of energy-storage equipment in a PVEH system is a complex trade-off problem. The primary goals of this study are to compare the engineering economics of PVEH systems with and without energy storage, and to explore time nodes when the cost of the former scenario can compete with the latter by factoring the technology learning curve. The levelized cost of hydrogen (LCOH) is a widely used economic indicator. Represented by seven areas in seven regions of China, results show that the LCOH with and without energy storage is approximately 22.23 and 20.59 yuan/kg in 2020, respectively. In addition, as technology costs drop, the LCOH of a PVEH system with energy storage will be less than that without energy storage in 2030.

关键词: hydrogen     off-grid photovoltaic     energy storage     LCOH     engineering economics    

Combined heat and power plant integrated with mobilized thermal energy storage (M-TES) system

Weilong WANG, Yukun HU, Jinyue YAN, Jenny NYSTR?M, Erik DAHLQUIST

《能源前沿(英文)》 2010年 第4卷 第4期   页码 469-474 doi: 10.1007/s11708-010-0123-9

摘要: Energy consumption for space and tap water heating in residential and service sectors accounts for one third of the total energy utilization in Sweden. District heating (DH) is used to supply heat to areas with high energy demand. However, there are still detached houses and sparse areas that are not connected to a DH network. In such areas, electrical heating or oil/pellet boilers are used to meet the heat demand. Extending the existing DH network to those spare areas is not economically feasible because of the small heat demand and the large investment required for the expansion. The mobilized thermal energy storage (M-TES) system is an alternative source of heat for detached buildings or sparse areas using industrial heat. In this paper, the integration of a combined heat and power (CHP) plant and an M-TES system is analyzed. Furthermore, the impacts of four options of the integrated system are discussed, including the power and heat output in the CHP plant. The performance of the M-TES system is likewise discussed.

关键词: Mobilized thermal energy system     district heating     thermal energy storage     combined heat and power     detached houses    

Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future

Dawid P. Hanak, Vasilije Manovic

《化学科学与工程前沿(英文)》 2020年 第14卷 第3期   页码 453-459 doi: 10.1007/s11705-019-1892-2

摘要: Renewable energy sources and low-carbon power generation systems with carbon capture and storage (CCS) are expected to be key contributors towards the decarbonisation of the energy sector and to ensure sustainable energy supply in the future. However, the variable nature of wind and solar power generation systems may affect the operation of the electricity system grid. Deployment of energy storage is expected to increase grid stability and renewable energy utilisation. The power sector of the future, therefore, needs to seek a synergy between renewable energy sources and low-carbon fossil fuel power generation. This can be achieved via wide deployment of CCS linked with energy storage. Interestingly, recent progress in both the CCS and energy storage fields reveals that technologies such as calcium looping are technically viable and promising options in both cases. Novel integrated systems can be achieved by integrating these applications into CCS with inherent energy storage capacity, as well as linking other CCS technologies with renewable energy sources via energy storage technologies, which will maximise the profit from electricity production, mitigate efficiency and economic penalties related to CCS, and improve renewable energy utilisation.

关键词: carbon capture     energy storage     renewable energy sources     decarbonisation     fossil fuels    

The carbon dioxide removal potential of Liquid Air Energy Storage: A high-level technical and economic

Andrew LOCKLEY, Ted von HIPPEL

《工程管理前沿(英文)》 2021年 第8卷 第3期   页码 456-464 doi: 10.1007/s42524-020-0102-8

摘要: Liquid Air Energy Storage (LAES) is at pilot scale. Air cooling and liquefaction stores energy; reheating revaporises the air at pressure, powering a turbine or engine (Ameel et al., 2013). Liquefaction requires water & CO removal, preventing ice fouling. This paper proposes subsequent geological storage of this CO – offering a novel Carbon Dioxide Removal (CDR) by-product, for the energy storage industry. It additionally assesses the scale constraint and economic opportunity offered by implementing this CDR approach. Similarly, established Compressed Air Energy Storage (CAES) uses air compression and subsequent expansion. CAES could also add CO scrubbing and subsequent storage, at extra cost. CAES stores fewer joules per kilogram of air than LAES – potentially scrubbing more CO per joule stored. Operational LAES/CAES technologies cannot offer full-scale CDR this century (Stocker et al., 2014), yet they could offer around 4% of projected CO disposals for LAES and<25% for current-technology CAES. LAES CDR could reach trillion-dollar scale this century (20 billion USD/year, to first order). A larger, less certain commercial CDR opportunity exists for modified conventional CAES, due to additional equipment requirements. CDR may be commercially critical for LAES/CAES usage growth, and the necessary infrastructure may influence plant scaling and placement. A suggested design for low-pressure CAES theoretically offers global-scale CDR potential within a century (ignoring siting constraints) – but this must be costed against competing CDR and energy storage technologies.

关键词: carbon dioxide removal     Liquid Air Energy Storage     Compressed Air Energy Storage     geoengineering    

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1301-1314 doi: 10.1007/s11709-022-0883-4

摘要: Thermal energy storage recycled powder mortar (TESRM) was developed in this study by incorporating paraffin/recycled brick powder (paraffin/BP) composite phase change materials (PCM). Fourier transform infrared and thermogravimetric analysis results showed that paraffin/BP composite PCM had good chemical and thermal stability. The onset melting temperature and latent heat of the composite PCM were 46.49 °C and 30.1 J·g−1. The fresh mortar properties and hardened properties were also investigated in this study. Paraffin/BP composite PCM with replacement ratio of 0%, 10%, 20%, and 30% by weight of cement were studied. The results showed that the static and dynamic yield stresses of TESRM were 699.4% and 172.9% higher than those of normal mortar, respectively. The addition of paraffin/BP composite PCM had a positive impact on the mechanical properties of mortar at later ages, and could also reduce the dry shrinkage of mortar. The dry shrinkage of TESRM had a maximum reduction about 26.15% at 120 d. The thermal properties of TESRM were better than those of normal mortar. The thermal conductivity of TESRM was 36.3% less than that of normal mortar and the heating test results showed that TESRM had good thermal energy storage performance.

关键词: recycled powder mortar     recycled brick powder     thermal energy storage     paraffin     phase change material    

Optimal portfolio design of energy storage devices with financial and physical right market

《能源前沿(英文)》 2022年 第16卷 第1期   页码 95-104 doi: 10.1007/s11708-021-0788-2

摘要: With the continuous development of the spot market, in the multi-stage power market environment with the day-ahead market and right market, the study associated with the portfolio of energy storage devices requires that attention should be paid to transmission congestion and power congestion. To maximize the profit of energy storage and avoid the imbalance of power supply and consumption and the risk of node price fluctuation caused by transmission congestion, this paper presents a portfolio strategy of energy storage devices with financial/physical contracts. First, the concepts of financial/physical transmission rights and financial/physical storage rights are proposed. Then, the portfolio models of financial contract and physical contract are established with the conditional value-at-risk to measure the risks. Finally, the portfolio models are verified through the test data of the Pennsylvania-New Jersey-Maryland (PJM) electric power spot market, and the comparison between the risk aversion of portfolios based on financial/physical contract with the portfolio of the market without rights. The simulation results show that the portfolio models proposed in this paper can effectively avoid the risk of market price fluctuations.

关键词: portfolio     node price fluctuation     transmission right     energy storage right     risk aversion    

标题 作者 时间 类型 操作

Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity

Evelyn Chalmers, Yi Li, Xuqing Liu

期刊论文

电化学储能技术发展研究

潘新慧,陈人杰,吴锋

期刊论文

Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated

Wenjin Ding, Alexander Bonk, Thomas Bauer

期刊论文

S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion

Chao Zhang, Chenbao Lu, Shuai Bi, Yang Hou, Fan Zhang, Ming Cai, Yafei He, Silvia Paasch, Xinliang Feng, Eike Brunner, Xiaodong Zhuang

期刊论文

Redox flow batteries—Concepts and chemistries for cost-effective energy storage

Matthäa Verena HOLLAND-CUNZ, Faye CORDING, Jochen FRIEDL, Ulrich STIMMING

期刊论文

Energy storage resources management: Planning, operation, and business model

期刊论文

Clean energy technology: materials, processes and devices for electrochemical energy conversion and storage

Hong YANG, Junliang ZHANG, Baolian YI

期刊论文

储能钠电池技术发展的挑战与思考

胡英瑛,吴相伟,温兆银,侯明,衣宝廉

期刊论文

Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation

期刊论文

Can energy storage make off-grid photovoltaic hydrogen production system more economical?

期刊论文

Combined heat and power plant integrated with mobilized thermal energy storage (M-TES) system

Weilong WANG, Yukun HU, Jinyue YAN, Jenny NYSTR?M, Erik DAHLQUIST

期刊论文

Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future

Dawid P. Hanak, Vasilije Manovic

期刊论文

The carbon dioxide removal potential of Liquid Air Energy Storage: A high-level technical and economic

Andrew LOCKLEY, Ted von HIPPEL

期刊论文

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

期刊论文

Optimal portfolio design of energy storage devices with financial and physical right market

期刊论文